2023 GNSS-IR short course Snow Accumulation

and the state of the

In the first hour

- We will focus on snow both what I will call "seasonal snow" and snow accumulation on ice sheets.
- Both rely on measuring the reflector height RH, which is a primary output of gnssrefl.
- Please keep in mind that while we concentrate on RH, the amplitude of that retrieval also has information and is available to you should you want to investigate further.
- Unlike other *in situ* sensors, GNSS-IR measures a "large" footprint.
- We generally focus here on daily averages.

Good, Bad, Complex

- Snow on ice:
 - Good thing: rare to find buildings in Antarctica and Greenland that will obstruct your reflected signals (though it does happen)
 - Good thing: fairly traditional sampling intervals (15-30 seconds) usually work.
 - Good or bad thing: interpretation can be complex
- Seasonal snow:
 - Complicated: you have four kinds of surfaces: bare soil, bare soil with vegetation, new snow, compacted snow.
 - It does not directly measure SWE, which is generally the preferred quantity. SWE model is available to be ported.
 - Bad thing: Civilization

- If you are interested in measuring snow accumulation on ice, then you probably already know more than I do about ice sheets.
- Look to the published papers on this for information about what RH means on an ice sheet.
- You will likely need to think about compaction.
- Remember that this is a GNSS receiver so you have access to *precise positioning* as well as GNSS-IR.

Constraints on snow accumulation and firn density in Greenland using GPS receivers

Kristine M. LARSON,¹ John WAHR,² Peter KUIPERS MUNNEKE³

GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica

David E. Shean^{1,2}, Knut Christianson³, Kristine M. Larson⁴, Stefan R. M. Ligtenberg⁵, Ian R. Joughin¹, Ben E. Smith¹, C. Max Stevens³, Mitchell Bushuk⁶, and David M. Holland^{7,8}

Brief Communication: Update on the GPS reflection technique for measuring snow accumulation in Greenland

Kristine M. Larson¹, Michael MacFerrin², and Thomas Nylen³

Long-Term Snow Height Variations in Antarctica from GNSS Interferometric Reflectometry

by (Elisa Pinat ^{1,*} \square), **Pascale Defraigne** ¹ \square), **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Defraigne** ¹ \square), **Pascale Sergeot** ^{1,2} \square , **Pascale Sergeot**

Snow accumulation variability on a West Antarctic ice stream observed with GPS reflectometry, 2007–2017

M. R. Siegfried^{1,2}, B. Medley³, K. M. Larson⁴, H. A. Fricker¹, and S. Tulaczyk⁵

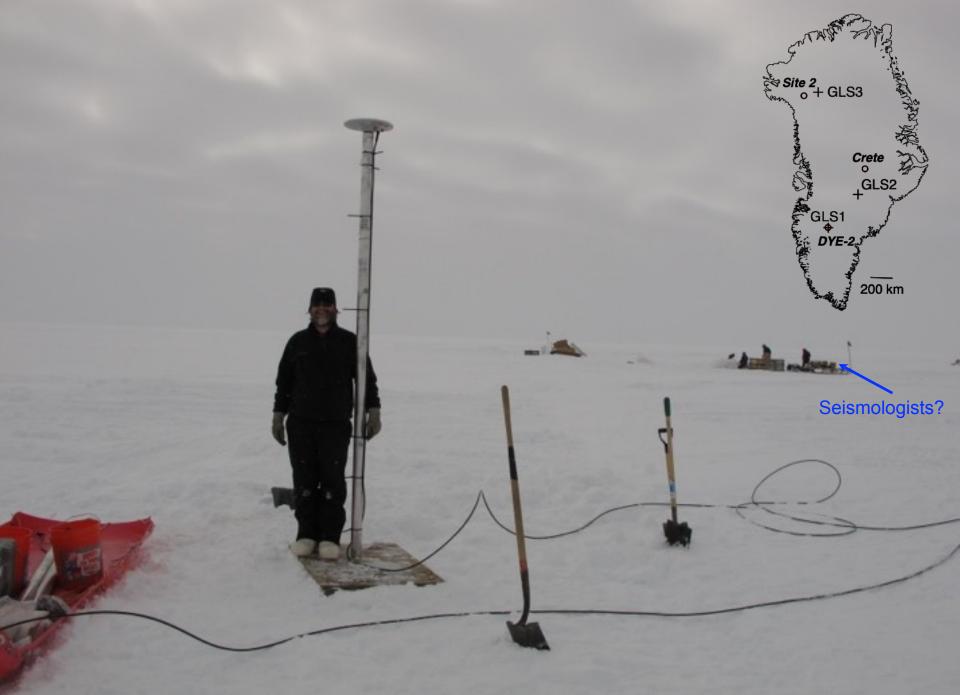
- Seasonal snow:
 - PBO H2O worked on this.
 - We computed snow depth and SWE for 250 sites for almost a decade. <u>https://gnss-reflections.org/maps</u>
 - We compared snow RH with "bare soil" RH.

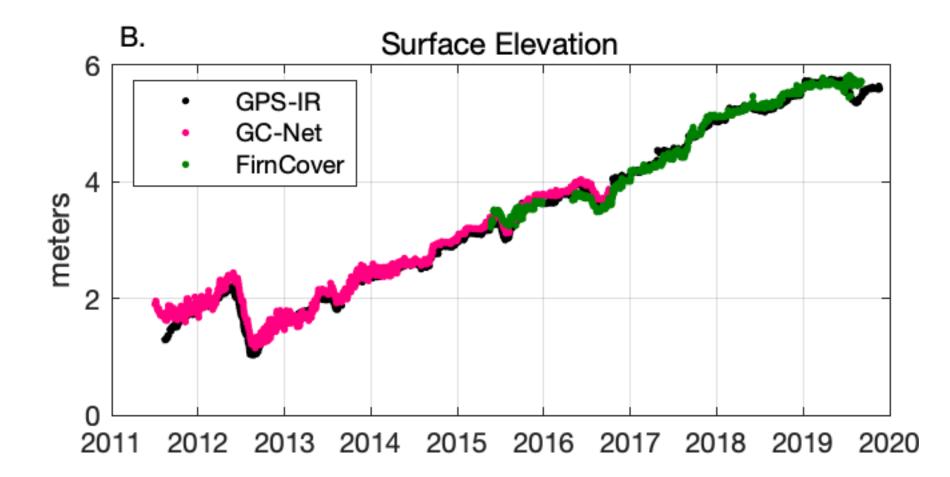
Can we measure snow depth with GPS receivers?

Kristine M. Larson,¹ Ethan D. Gutmann,² Valery U. Zavorotny,³ John J. Braun,⁴ Mark W. Williams,⁵ and Felipe G. Nievinski¹

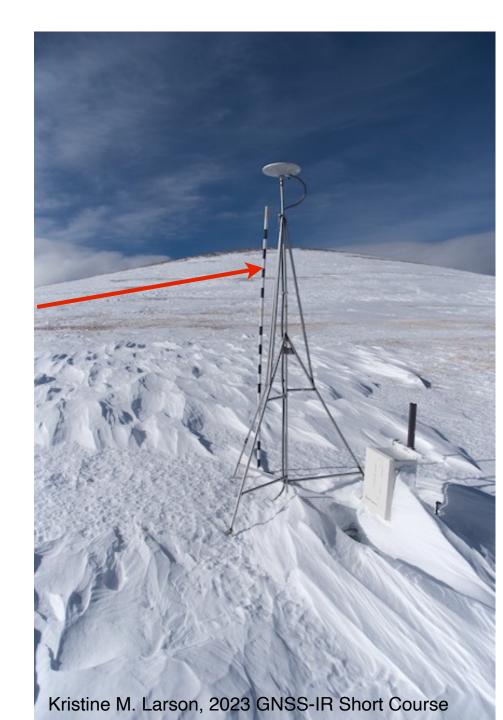
GPS snow sensing: results from the EarthScope Plate Boundary Observatory

Kristine M. Larson · Felipe G. Nievinski

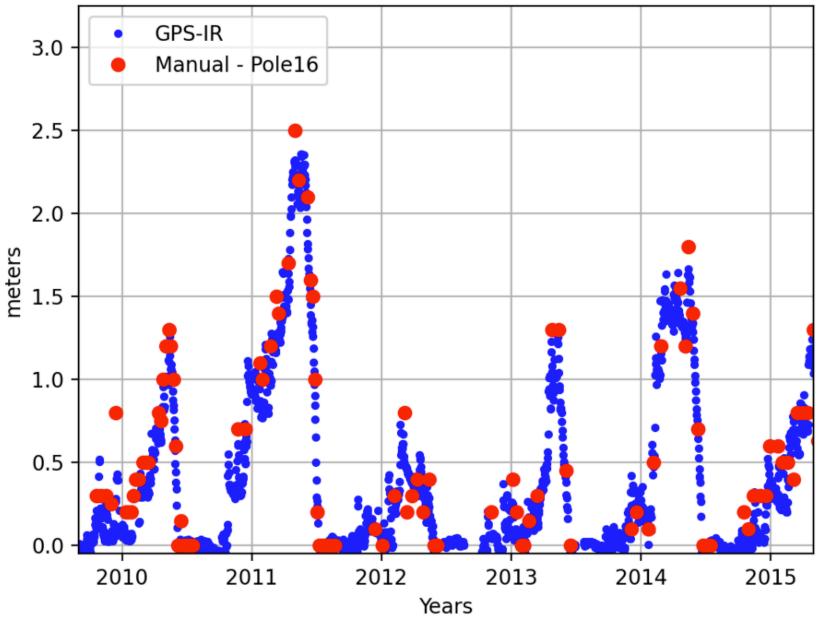

Snow depth, density, and SWE estimates derived from GPS reflection data: Validation in the western U.S.


James L. McCreight¹, Eric E. Small², and Kristine M. Larson¹

Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part II: Application and Validation


Felipe G. Nievinski and Kristine M. Larson

Does it work?



Kristine M. Larson, 2023 GNSS-IR Short Course

pole 16

Snow Depth, Niwot Ridge LTER Saddle

Kristine M. Larson, 2023 GNSS-IR Short Course